Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
PLoS One ; 19(4): e0301607, 2024.
Article in English | MEDLINE | ID: mdl-38598514

ABSTRACT

The continuous accumulation of waste, particularly from industries, often ends up in landfills. However, this waste can be transformed into a valuable resource through innovative methods. This process not only reduces environmental pollution but also generates additional useful products. This study aims to screen novel high-efficiency cellulose-degrading bacteria from cow dung, forest soil, brewery waste, and agro-industrial waste in the Debre Berhan area for the treatment of cellulose-rich agricultural waste. The serial dilution and pour plate method was used to screen for cellulolytic bacteria and further characterized using morphological and biochemical methods. From eleven isolates cow dung 1 (CD1), cow dung 6 (CD6) and cow dung (CD3) which produced the largest cellulolytic index (3.1, 2.9 and 2.87) were selected. Samples from forest soil, and spent grain didn't form a zone of clearance, and effluent treatment and industrial waste (IW9) shows the smallest cellulolytic index. Three potential isolates were then tested for cellulolytic activity, with cow dung 1 (CD1) displaying promising cellulase activity. These bacterial isolates were then identified as Bacillus species, which were isolated from cow dung 1 (CD1) with maximum cellulase production. Cow dung waste is a rich source of cellulase-producing bacteria, which can be valuable and innovative enzymes for converting lignocellulosic waste.


Subject(s)
Cellulase , Animals , Female , Cattle , Cellulase/chemistry , Industrial Waste , Bacteria , Cellulose , Soil , Forests
SELECTION OF CITATIONS
SEARCH DETAIL
...